and about 90° in the analogous di-exo compounds. The calculated value of this torsion angle is 43.0 (5) (A), $43.8(5)^{\circ}(B)$ in (I) and $-70.8(8)^{\circ}$ in (II). This confirms estimates from spectroscopic results of the values of these angles for di-endo (I) and di-exo (II) derivatives. The difference in torsion angles causes different molecular conformations in the di-endo and di-exo molecules, the latter isomer being more planar; this can substantially influence structurally specific action at receptor sites.

The molecules of the two compounds are connected through hydrogen bonds of $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ type to form dimers. The corresponding bond lengths and angles are $\mathrm{H} \cdots \mathrm{S}=2.301$ (2) (A), 2.466 (4) (B), $\mathrm{N}(1) \cdots \mathrm{S}=3.322(3)(A), 3.348(5) \AA(B), \angle \mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ $=157.2(2)(A), 159.5(3)^{\circ}$ (B) (I) and $\mathrm{H} \cdots \mathrm{S}=$ 2.474 (5), $\quad \mathrm{N}(1) \cdots \mathrm{S}=3.383$ (6) $\AA, \quad \angle \mathrm{N}-\mathrm{H} \cdots \mathrm{S}=$ $141 \cdot 0(4)^{\circ}$ (II). These results are in agreement with the lengths of hydrogen bonds in similar molecules
(Kapor et al., 1987). Molecular packing in the crystal is shown in Fig. 2.

References

Argay, Gy., Kálmán, A., Kapor, A., Stájer, G. \& Bernáth, G. (1985). J. Mol. Struct. 131, 31-43.

Bernáth, G., Gera, L., Göndös, Gy., Hermann, M., Szentivány, M., Ecsery, Z. \& Janváry, E. (1977). German Patent No. 2,643,384; Chem. Abstr. 87, No. 168078 b.
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Kálmán, A., Czugler, M. \& Simon, K. (1982). In Molecular Structure and Biological Activity, edited by J. F. Griffin \& W. L. Duax, pp. 367-376. New York: Elsevier Biomedical.

Kapor, A., Ribár, B., Divjaković, V., Stájer, G., Bernáth, G. \& Argay, Gy. (1987). Acta Cryst. C43, 1347-1350.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stájer, G., Szabo, E. A., Fülöp, F., Bernáth, G. \& Sohár, P. (1983). J. Heterocycl. Chem. 20, 1181-1185.

Structure of 6α-Methyl-3,20-oxo-1,4,9(11)-pregnatrien-17 α-yl Acetate

By Zdzislaw Gałdecki
Technical University of Lódź, Institute of General Chemistry, ul. Zwirki 36, 90-924 Łódź, Poland
Pawee Grochulski and Zdziseaw Wawrzak
Technical University of Łódź, Institute of Physics, ul. Wólczańska 219, 93-005 Łódź, Poland
and William L. Duax and Phyllis D. Strong
Medical Foundation of Buffalo, Inc., 73 High Street, Buffalo, New York 14203, USA

(Received 18 April 1989; accepted 1 November 1989)

Abstract

C}_{24} \mathrm{H}_{30} \mathrm{O}_{4}, \quad M_{r}=382 \cdot 5\), orthorhombic, $P 2_{12} 2_{1} 1_{1}, \quad a=13.091$ (2),$\quad b=19.711$ (1),$\quad c=$ 8.242 (1) $\AA, \quad V=2126.7$ (5) $\AA^{3}, \quad Z=4, \quad D_{x}=$ $1.195 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Cu} K \alpha)=1.54184 \AA, \mu(\mathrm{Cu} K \alpha)=$ $0.56 \mathrm{~mm}^{-1}, \quad F(000)=824, \quad T=295 \mathrm{~K}$. Final $R=$ 0.045 for 2446 unique reflections. The planar A ring is bent relative to the rest of the steroid skeleton. The B ring has a typical chair conformation and the C and D rings assume $13 \beta, 14 \alpha$-half-chair and 13β envelope conformations, respectively. The conformation of the progesterone side chain is similar to the conformation observed in other 17α-ester pregnanes: $\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 20-\mathrm{O} 20$ torsion angle -27.4 (3) ${ }^{\circ}$.

Introduction. As is well known, a number of steroid hormones have a progesterone-like side chain at the C17 position. It is highly probable that the conformation of the side chain is responsible for control over the interaction of these hormones with their
receptors (Duax, Cody, Griffin, Rohrer \& Weeks, 1978). The 17α-ester substituents were found to have a restricting influence on the side-chain conformation (Duax, Griffin \& Rohrer, 1981). The crystal structure of the title compound (I) has been determined as part of an effort to establish intramolecular features responsible for the progesterone side-chain conformation.

(I)

Table 1. Positional $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$ with e.s.d.'s in parentheses, for the non-hydrogen atoms

$U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Cl	11533 (2)	6526 (1)	728 (3)	61 (1)
C2	12528 (2)	6672 (1)	855 (3)	66 (1)
C3	13222 (2)	6554 (1)	-472 (4)	67 (1)
C4	12791 (2)	6273 (1)	-1967 (3)	59 (1)
C5	11796 (2)	6120 (1)	-2128 (3)	50 (1)
C6	11374 (2)	5797 (1)	-3645 (3)	53 (1)
C7	10873 (2)	5121 (1)	-3179 (3)	52 (1)
C8	10068 (1)	5180 (1)	-1839 (2)	45 (1)
C9	10476 (1)	5567 (1)	-374 (2)	44 (1)
C10	11037 (2)	6239 (1)	-760 (3)	50 (1)
Cl1	10333 (2)	5353 (1)	1134 (2)	48 (1)
C12	9724 (2)	4735 (1)	1636 (2)	47 (1)
C13	9066 (1)	4484 (1)	239 (2)	44 (1)
C14	9715 (1)	4476 (1)	-1315 (2)	43 (1)
Cl 5	9086 (2)	4057 (1)	-2522 (3)	55 (1)
C16	8409 (2)	3590 (1)	- 1489 (3)	60 (1)
C17	8716 (2)	3728 (1)	283 (3)	48 (1)
C 18	8134 (2)	4952 (1)	61 (3)	59 (1)
C19	10224 (2)	6774 (1)	- 1320 (4)	69 (1)
C20	7895 (2)	3597 (1)	1570 (3)	60 (1)
C21	8217 (2)	3494 (1)	3297 (4)	68 (1)
C22	9567 (2)	2669 (1)	802 (3)	60 (1)
C23	10574 (3)	2349 (1)	1056 (5)	82 (1)
C6A	12158 (2)	5689 (2)	-4997 (3)	69 (1)
O3	14144 (1)	6680 (1)	- 371 (3)	95 (1)
O17A	9645 (1)	3346 (1)	669 (2)	51 (1)
O20	7000 (1)	3645 (1)	1204 (3)	87 (1)
O 22	8758 (2)	2373 (1)	741 (3)	76 (1)

Experimental. Crystals were grown from acetone solution. Crystal data were measured on a crystal of dimensions $0.12 \times 0.60 \times 0.80 \mathrm{~mm}$. Weissenberg photographs indicated space group $P 2_{1} 2_{1} 2_{1}$. The unit-cell dimensions were determined from the setting of 31 reflections with $60<\theta<70^{\circ}$. The intensity data for 2528 independent reflections were collected on an Enraf-Nonius CAD-4 diffractometer using Ni -filtered $\mathrm{Cu} K \alpha$ radiation, corrected for Lp , absorption ignored, scan width $(0.80+0.20 \tan \theta)^{\circ}$. Data collection with $3<2 \theta<154^{\circ}, 0 \leq h \leq 16,0 \leq k$ $\leq 24,0 \leq l \leq 10, \theta-2 \theta$ scan mode. Four standard reflections ($3,12,2 ; 753 ; 0,10,4 ; 265$) were measured every 4 h and varied in intensity by $\leq 2 \%$ during the data collection. Positions of all non-hydrogen atoms were found using MULTAN (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980); these atoms were refined anisotropically. All hydrogen atoms were located in a difference Fourier map and refined as 'riding groups' except for hydrogens from the terminal C21 and C23 methyl groups which were not refined. Scattering factors and anomalousdispersion parameters were taken from International Tables for X-ray Crystallography (1974). The final agreement factors were $R=0.045, w R=0.046, S=$ $2.321\left[w=1 / \sigma^{2}\left(F_{o}\right)\right]$ for 277 variables and 2446 observed reflections for which $F_{o}>4 \sigma\left(F_{o}\right)$. The maximum Δ / σ in the last refinement cycle was $0 \cdot 17$. The

Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$, with e.s.d.'s in parentheses

$\mathrm{C} 1-\mathrm{C} 2$	1.338 (4)	$\mathrm{Cl1}-\mathrm{Cl2}$	1.514 (3)
$\mathrm{Cl}-\mathrm{Cl} 0$	1.499 (3)	$\mathrm{Cl2-C13}$	1.521 (3)
C2-C3	1.441 (4)	C13-C14 1	1.537 (2)
C3-C4	1.464 (4)	C13-C17 1	1.559 (3)
C3-O3	1.235 (3)	$\mathrm{Cl} 3-\mathrm{Cl} 8$ 1	1.537 (3)
C4-C5	1.344 (4)	$\mathrm{C14}-\mathrm{C15} 1$	1.533 (3)
C5-C6	1.508 (3)	$\mathrm{Cl} 5-\mathrm{Cl} 61$	1.535 (3)
C5-Cl0	1.521 (4)	$\mathrm{Cl}^{-}-\mathrm{Cl} 7$ -	1.539 (4)
C6-C7	1.534 (3)	$\mathrm{C} 17-\mathrm{C} 20$ -	1.532 (4)
C6-- 6 A	1.530 (4)	$\mathrm{C} 17-\mathrm{O} 17 \mathrm{~A} \quad 1$	1.465 (3)
C7-C8	1.531 (3)	$\mathrm{C} 20-\mathrm{C} 21$ 1	1.498 (4)
C8-C9	1.525 (2)	$\mathrm{C} 20-\mathrm{O} 20-1$	1.214 (3)
C8-C14	1.525 (3)	$\mathrm{C} 22-\mathrm{C} 23-1$	1.476 (4)
C9-C10	1.548 (3)	$\mathrm{C} 22-\mathrm{O} 17 \mathrm{~A}$	1.343 (3)
C9-Cl1	1.326 (2)	$\mathrm{C} 22-\mathrm{O} 22-1$	$1 \cdot 210$ (4)
C10-C19	1.568 (3)		
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 10$	124.5 (2)	$\mathrm{Cl1}-\mathrm{Cl2-C13}$	$110 \cdot 7$ (2)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	121.3 (2)	$\mathrm{Cl2}-\mathrm{Cl} 3-\mathrm{Cl} 4$	108.7 (1)
C2-C3-C4	117.2 (2)	$\mathrm{Cl2-C13-C17}$	117.4 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	$122 \cdot 2$ (2)	$\mathrm{C12-C13-C18}$	109.1 (2)
C4-C3-O3	$120 \cdot 6$ (2)	$\mathrm{C14-C13-C17}$	99.9 (1)
C3-C4-C5	122.8 (2)	C14-C13-C18	111.4 (2)
C4-C5-C6	122.1 (2)	C17-C13-C18	110.0 (2)
C4-C5- Cl 0	121.7 (2)	C8-C14-Cl3	113.2 (1)
C6-C5-C10	$116 \cdot 1$ (2)	C8-C14-C15	118.0 (2)
C5-C6-C7	$108 \cdot 4$ (2)	$\mathrm{Cl} 3-\mathrm{Cl} 4-\mathrm{Cl} 5$	104.4 (1)
C5-C6-C6A	114.6 (2)	C14-C15-C16	$105 \cdot 9$ (2)
C7-C6-C6A	$110 \cdot 4$ (2)	C15-C16-C17	$105 \cdot 6$ (2)
C6-- $7-\mathrm{C} 8$	114.1 (2)	$\mathrm{Cl3-C17-C16}$	$102 \cdot 9$ (2)
C7-C8-C9	111.6 (2)	$\mathrm{C} 13-\mathrm{C} 17-\mathrm{C} 20$	112.5 (2)
C7-C8-C14	$110 \cdot 1$ (2)	$\mathrm{C13-C17-O17A}$	A 104.6 (2)
C9-C8-C14	109.7 (1)	$\mathrm{C16-C17-C20}$	116.4 (2)
C8-C9-C10	$115 \cdot 6$ (2)	$\mathrm{C} 16-\mathrm{C} 17-\mathrm{O} 17 \mathrm{~A}$	A 109.4 (2)
C8-C9-C11	$122 \cdot 3$ (2)	$\mathrm{C} 20-\mathrm{C} 17-\mathrm{O} 17 \mathrm{~A}$	A $110 \cdot 2$ (2)
C10-C9-Cl1	$122 \cdot 1$ (2)	$\mathrm{C} 17-\mathrm{C} 20-\mathrm{C} 21$	118.9 (2)
$\mathrm{Cl}-\mathrm{C10-C5}$	112.5 (2)	$\mathrm{C} 17-\mathrm{C} 20-\mathrm{O} 20$	119.5 (2)
$\mathrm{Cl}-\mathrm{C10}-\mathrm{C} 9$	$111 \cdot 1$ (2)	$\mathrm{C} 21-\mathrm{C} 20-\mathrm{O} 20$	121.2 (2)
C1-C10-C19	$106 \cdot 3$ (2)	$\mathrm{C} 23-\mathrm{C} 22-\mathrm{O} 17 \mathrm{~A}$	A 111.6 (2)
C5-C10-C9	$109 \cdot 3$ (2)	$\mathrm{C} 23-\mathrm{C} 22-\mathrm{O} 22$	$125 \cdot 6$ (3)
C5-C10-C19	$109 \cdot 2$ (2)	$\mathrm{O} 17 \mathrm{~A}-\mathrm{C} 22-\mathrm{O} 22$	22122.8 (2)
C9-C10-C19	108.3 (2)	$\mathrm{C} 17-\mathrm{O} 17 \mathrm{~A}-\mathrm{C} 22$	$2117.7(2)$
$\mathrm{C} 9-\mathrm{Cl1}-\mathrm{Cl} 2$	$125 \cdot 9$ (2)		

final difference Fourier map showed no peaks higher than $|0.25| \mathrm{e} \AA^{-3}$.

Plots were made with ORTEP (Johnson, 1970) and PLUTO (Motherwell, 1976). All calculations except for MULTAN were performed using SHELX76 (Sheldrick, 1976). Fractional positional and thermal parameters are presented in Table 1. Bond lengths and angles are presented in Table 2.*

Discussion. Molecular diagrams are shown in Fig. 1. The A ring is planar and significantly bent toward the α face of the steroid skeleton. The side of the skeleton on which the C18 and C19 angular methyls are placed is called the β face whereas the opposite

[^0]side is called the α face. The B ring has typical chair conformation and the C ring is in $13 \beta, 14 \alpha$-half-chair conformation with asymmetry parameters $\Delta C_{2}^{9,11}=$ 1.5 and $\Delta C_{s}^{9}=22.9$ (Duax \& Norton, 1975). The D ring has 13β-envelope conformation with asymmetry parameters $\Delta C_{s}^{13}=3.5$ and $\Delta C_{2}^{15}=18 \cdot 0$. The distance of O 3 from the plane defined by atoms C 5 through C17 can be used as a measure of a degree of bending of the A ring relative to the rest of the steroid skeleton. Among six pregnane structures (Griffin, Duax \& Weeks, 1984) distances vary from 2.13 to $2 \cdot 94 \AA$ (PR 50, 52, 55, $82,91,96$; see deposited material) with the average value $2.45 \AA$. The distance found in the present structure is $2.30 \AA$ which indicates that in spite of the additional unsaturation

Fig. 1. ORTEP views of the steroid molecule, with thermal ellipsoids at 50% probability.

Fig. 2. Crystal packing diagram along the \mathbf{c} direction.
between the C 9 and C 11 atoms the molecule retains its bow typical for pregnanes with the 1,4-dien-3-one system.
It has been shown that in eight 17α-ester substituted steroid structures the $\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 20-\mathrm{O} 20$ torsion angle is between -24 and -18° with the average value $-21(2)^{\circ}$ (Duax, Griffin \& Rohrer, 1981). The $\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 20-\mathrm{O} 20$ torsion angle is $-27.4(3)^{\circ}$ in the present study, slightly beyond the range observed before. In recently published structures of $11 \beta, 17 \alpha$-dihydroxy-21-methyl-5 α-pregn-4 ene-3,20-dione 17-butyrate (Barnes, Paton, Logan \& Redpath, 1985), 17α-hydroxyprogesterone caproate (Krstanović, Cvetković, Oberti \& Karanović, 1989), 17α-acetoxy-6-methylene-4-pregnene-3,20-dione
(Petrow, Padilla, McPhail, Bruchovsky \& Schneider, 1989) and 6α-methyl-17 α-hydroxyprogesterone pivalate (Wawrzak, Grochulski, Gałdecki, Duax \& Strong, 1990) the torsion angle was -22.2 (5), $-24(1),-22.8(4)$ and $-17.9(5)^{\circ}$, respectively. The average value of the torsion angle for 13 structures, including the title molecule, is $-21(8)^{\circ}$.
The crystal packing diagram along the \mathbf{c} direction is shown in Fig. 2.

This research was supported in part by grant RP.II. 10 from the Polish Ministry of National Education (MEN) and by PHS Grant No. DK26546.

References

Barnes, J. C., Paton, J. D., Logan, R. T. \& Redpath, J. (1985). Acta Cryst. C41, 763-766.
Duax, W. L., Cody, V., Griffin, D. C., Rohrer, C. M. \& Weeks, C. M. (1978). J. Toxicol. Environ. Health, 4, 205.
Duax, W. L., Griffin, D. C. \& Rohrer, C. M. (1981). J. Am. Chem. Soc. 103, 6705.
Duax, W. L. \& Norton, D. A. (1975). Atlas of Steroid Structure, Vol. 1, p. 18. New York: Plenum.
Griffin, J. F., Duax, M. L. \& Weeks, G. M. (1984). Atlas of Steroid Structure, Vol. 2. New York: Plenum.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1970). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.
Krstanović, I., Cvetković, N., Oberti, R. \& Karanović, Lu. (1989). Acta Cryst. C45, 478-480.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). multan80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Motherwell, W. D. S. (1976). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Petrow, V., Padilla, G. M., McPhail, A. T., Bruchovsky, N. \& Schneider, S. L. (1989). J. Steroid Biochem. 32, 399-407.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Wawrzak, Z., Grochulski, P., Galdecki, Z., Duax, W. L. \& Strong, P. D. (1990). Acta Cryst. In the press.

[^0]: * Lists of anisotropic thermal parameters, H-atom parameters, torsion angles, coded-structure references and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52766 (20 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

